This is probably one of the biggest ask that everyone has in this area. You signed up for a data science project. How do you put together a conceptual solution with the building blocks, betting your time and resources ? Searching Google for your problem, yields 100s of blogs/whitepapers out there that talks about a ML methodology they used and how they solved a problem. That white paper may also cite another 100 white papers in the area. One may wish to read all of them jumping over the math. Even if we could comprehend a tested solution, there is another problem of translating that into the technological solution that you are familiar with. What libraries you'd use if it's open source or R ? You can take existing R code from there, but what was the ML library used again ?
With tools like Aster, you can easily watch a you-tube video and try out something quickly in a few minutes and fail or succeed fast ...
Yet, how does one know which algorithm(s) or methodology to use to start with, to get decent results in a short time ? Why X vs Y algorithm or methodology ? How do you go top-down on this given a business problem ?
Today, there is no silver bullet to a data science problem that involves Machine Learning. Even the easiest problems poses challenges in some peculiar ways and one needs the right knowledge and expertise to workaround them. This is where I find most wannabe data scientists get discouraged and become gun shy. Something worked for someone in some type of data, but I'm not sure how to map that to my business problem I have on hand - will it even work ?? !!!
However if one understands ML at the right level of abstraction on what it can do for you, that is probably the best way to start exploring for help/training required. At a minimum, it helps one to frame questions to an expert to find answers. Hopefully this blog post and subsequent posts will provide some insight ...
While it's interesting to learn how ML works under the hood, it's important to learn the terminology at the right level so you can actually use it for your business application. That's why learning the ML Speak is very important ...
I want to start with a few terms and then we can map it to some problems later.
There are 1000+ more terms & ideas built on top of this that address all the different nuances. However, I can safely say that the entire world of ML algorithms revolves around the basic terms above. If you can explain your business application with above ML speak, it's half-way to deciding what algorithms you would be using in your application.
More in Part 2 of the blog (will appear in Teradata Aster Community Portal soon) ...
You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.